Scroll to top

Optimizing network performance

Answer to your problems

Machine learning - the best way to keep an eye on your network health

Bulb products


With the increasing complexity of the cable network, it has become impossible to manually process all the information and recognize the behaviour. Machine learning is the answer.

The following conditions must be met in a healthy network:

  • the values are not too close to the thresholds
  • the values are stable over time
  • the values ​​for different channels differ slightly


Cable modem (CM), as well as CMTS power, should be kept within the right thresholds, preferably with a certain margin (between -15 and 15 dBmV) SNR


Signal-to-noise ratio or noise margin – compares the level of the desired signal with the background noise level (should be 30 dB or more)

Machine learning enables automatic problem recognition

Network patterns can be recognized using a variety of machine learning algorithms. Cable modems data is grouped to identify problems for multiple customers leading to easier and faster network optimization.

The goal is to identify similar behavior in three steps:

Step 1: collecting and aggregating time-structured data

Step 2: grouping the data into similar groups based on their pattern of behavior over time

Step 3: optimize groups of items that behave the same way to improve network performance

Once the data is collected ... it's time for the magic part

In this case, network device data is collected and processed. For example, key network parameters are collected every half hour (eg SNR, CER …) The more information available, the better the analysis.

As expected, such an analysis collects large amounts of data, which is often difficult to understand.

To address this challenge, we use anomaly detection. What does that mean? Time series decomposition is a statistical task that deconstructs a time series into several components, each representing one of the fundamental categories of patterns. As a result, any anomaly in the time series is discarded to track the actual patterns in the data. Hierarchical clustering produces a set of nested clusters organized as a hierarchical tree. This method is applied to the rest of the time series decomposition.

Reduce the company costs with large clusters

Each cluster consists of a set of correlated variables, classified based on their behavior over time. For example, if noise is recognized in a cluster, the same optimization method is applicable to the entire cluster, as opposed to tracking and optimizing individual items, one at a time.

The result brings savings !!

Our solution provides Telecom with indication of the exact network element that requires intervention. Instead of initiating multiple interventions for different customers, telecoms assign a single intervention to solve the problems of multiple customers who share the same network segment.

Contact us for a demo

Our products and solutions are here to help you